MATH 579 Exam 6 Solutions

1. (5-8 points) Let $\pi=(24)(153)$. Calculate and simplify $\pi \circ \pi \circ \pi$.

$$
\pi \circ \pi \circ \pi=(24)(24)(24)(153)(153)(153)=(24)
$$

2. Prove that $p(n)$ is equal to the number of partitions of $2 n$ with no odd parts.

We create a function f between partitions of n and partitions of $2 n$, that acts by doubling each part. The range of this function consists of exactly those partitions of $2 n$ with all even parts, and on that range f is invertible, hence it is a bijection.
3. Consider all partitions of 11 . What is the maximal Durfee square? Give all partitions that yield this Durfee square.

We can fit a 3×3 Durfee square into the partitions, but not a 4×4, since $9<11<16$. The remaining two boxes in the Ferrers diagram can both be to the right of the square $(5+3+3,4+4+3)$, or one can be to the right and one below $(4+3+3+1)$, or they can both be below the square $(3+3+3+2,3+3+3+1+1)$. Together, these are five partitions.
4. Consider $\pi \in S_{n}$. Prove that, for any such choice of π, that $|\operatorname{det} A|=1$, for matrix A whose entries are given by $A_{i, j}= \begin{cases}1 & \pi(i)=j \\ 0 & \text { otherwise. }\end{cases}$

Note that A is a $0 / 1$ matrix with exactly one 1 in each row and column. We will prove that all such matrices have determinant 1 or -1 , by induction on the size n. If $n=1$, then $A=[1]$, which has determinant 1. Otherwise, we expand A on the first row, which has just one nonzero entry, so $\operatorname{det} A=1(\pm 1) \operatorname{det} B$, where B is a matrix obtained by deleting the first row and some column of A. Since B is of the same form, $|\operatorname{det} B|=1$ by the inductive hypothesis, so $|\operatorname{det} A|=1$.
5. (5-12 points) Prove that $\left[\begin{array}{c}n \\ 2\end{array}\right] \geq(n-1)!+(n-2)$!, for all integer $n \geq 2$.

We want to count permutations of n with exactly two cycles. This includes those that have one cycle of length 1 and one cycle of length $n-1$ (and lots of others). These are counted by Thm 6.9 , as $\frac{n!}{1!1!1^{1}(n-1)^{1}}=n \cdot(n-2)!=(n-1) \cdot(n-2)!+1 \cdot(n-2)!=(n-1)!+(n-2)!$.

In fact, $\left[\begin{array}{l}n \\ 2\end{array}\right]=(n-1)!\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}\right)$.

